Chapter 4

Graphing Linear Equations
Chapter Sections

4.1 – The Cartesian Coordinate System and Linear Equations in Two Variables

4.2 – Graphing Linear Equations

4.3 – Slope of a Line

4.4 – Slope-Intercept and Point-Slope Forms

4.5 – Graphing Linear Inequalities

4.6 – Functions
4.1

The Cartesian Coordinate System and Linear Equations in Two Variables
Definitions

A **graph** shows the relationship between two variables in an equation.

The **Cartesian (rectangular) coordinate system** is a grid system used to draw graphs. It is named after its developer, René Descartes (1596-1650).
The two intersecting axis form four quadrants, numbered I through IV.

The horizontal axis is called the x-axis.

The vertical axis is called the y-axis.
Definitions

The point of intersection of the two axes is called the **origin**.

The **coordinates**, or the value of the x and the value of the y determines the point. This is also called an **ordered pair**.
Plotting Points

Plot the point (3, –4). The x-coordinate is 3 and the y-coordinate is –4.
Plot the point \((3, -4)\).
The \(x\)-coordinate is 3 and the \(y\)-coordinate is \(-4\).
Plot the point (3, -4).
The x-coordinate is 3 and the y-coordinate is -4.
Linear Equations

A **linear equation in two variables** is an equation that can be put in the form

\[ax + by = c \]

where \(a, b, \) and \(c \) are real numbers.

This is called the **standard form** of an equation.

Examples:

\[4x - 3y = 12 \]
\[x + 2y = -35 \]
Solutions to Equations

The **solution** to an equation is the ordered pair that can be substituted into the equation without changing the “validity” of the equation.

Is \((3, 0)\) a solution to the equation \(4x - 3y = 12\)?

\[
4x - 3y = 12 \\
4(3) - 3(0) = 12 \\
12 - 0 = 12 \\
12 = 12
\]
Yes, it is a solution.
A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation.

A set of points that are in a straight line are collinear.

The points $(-1, 4)$, $(1, 1)$ and $(4, -3)$ are collinear.
4.2

Graphing Linear Equations
Graph by Plotting Points

1. Solve the linear equation for the variable y.
2. Select a value for the variable x. Substitute this value in the equation for x and find the corresponding value of y. Record the ordered pair (x,y).
3. Repeat step 2 with two different values of x. This will give you two additional ordered pairs.
4. Plot the three ordered pairs.
5. Draw a straight line through the points.
Graph by Plotting Points

Graph the equation $y = -x + 3$.

Let $x = 2 \quad \Rightarrow \quad y = -2 + 3 \quad \Rightarrow \quad y = 1$
This gives us the point $(2, 1)$.

Let $x = -2 \quad \Rightarrow \quad y = -(-2) + 3 \quad \Rightarrow \quad y = 5$
This gives us the point $(-2, 5)$.

Let $x = 1 \quad \Rightarrow \quad y = -1 + 3 \quad \Rightarrow \quad y = 2$
This gives us the point $(1, 2)$.

Plot the points and draw the line.
Plot the points (2, 1), (-2, 5), and (1, 2).

Draw the line.
Graph Using Intercepts

1. Find the y-intercept by setting x in the equation equal to 0 and finding the corresponding value of y.
2. Find the x-intercept by setting the y in the equation equal to 0 and finding the corresponding value of x.
3. Determine a check point by selecting a nonzero value for x and finding the corresponding y.
4. Plot the two intercepts and the check point.
5. Draw a straight line through the points.
Graph the equation \(-3y - 2x = -6\).

Let \(x = 0\):

\[-3y - 2(0) = -6 \quad \Rightarrow \quad y = 2\]

This gives us the y-intercept \((0, 2)\).

Let \(y = 0\):

\[-3(0) - 2x = -6 \quad \Rightarrow \quad x = 3\]

This gives us the x-intercept \((3, 0)\).

Let \(x = 2\):

\[-3y - 2(2) = -6 \quad \Rightarrow \quad -3y = -2 \quad \Rightarrow \quad y = \frac{2}{3}\]

This gives us the point \((2, \frac{2}{3})\).

Plot the points and draw the line.
Plot the points $(0, 2)$, $(3, 0)$, and $(2, \frac{2}{3})$.

Draw the line.
4.3

Slope of a Line
The **slope of a line** is the ratio of the vertical change between any two selected points on the line.

\[
\text{slope} = m = \frac{\text{change in } y \text{ (vertical change)}}{\text{change in } x \text{ (horizontal change)}} = \frac{y_2 - y_1}{x_2 - x_1}
\]

Consider the points (3, 6) and (1,2).
(3, 6) and (1,2) \[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{3 - 1} = \frac{4}{2} = 2 \]

This means the graph is moving up 4 and to the right 2.
The equation for slope is given by:

\[m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 2}{3 - 1} = \frac{4}{2} \]

Simplifying, \(\frac{4}{2} = \frac{2}{1} \), so \(m = 2 \).
Positive & Negative Slopes

Positive Slope
Line rises from left to right

Negative Slope
Line falls from left to right
Horizontal Lines

Every horizontal line has a slope of 0.

$x = 2$
Vertical Lines

The slope of any vertical line is undefined.

$y = -4$
Parallel Lines

Two non-vertical lines with the same slope and different y-intercepts are parallel. Any two vertical lines are parallel to each other.

$m_1 = m_2$
Two lines whose slopes are negative reciprocals of each other are **perpendicular** lines. Any vertical line is perpendicular to any horizontal line.

\[m_1 = \frac{-1}{m_2} \]
Slope-Intercept and Point-Slope Forms
In the **slope-intercept form**, the graph of a linear equation will always be a straight line in the form $y = mx + b$ were m is the slope of the line and b is the y-intercept $(0, b)$.

Examples:

- $y = 3x - 4$
 - slope is 3
 - y-intercept is $(0, -4)$

- $y = \text{hand}x + \text{foot}$
 - slope is hand
 - y-intercept is $(0, \text{foot})$
Write the equation \(6x = 8y + 7\) in slope-intercept form.

Solve for \(y\).

\[
6x = 8y + 7 \\
-8y = -6x + 7 \\
y = \frac{-6}{8}x + \frac{7}{8}
\]

Slope is \(\frac{-6}{8}\), \(y\)-intercept is \((0, \frac{7}{8})\).
Point-Slope Form

When the slope and a point on the line are known, we can use the point-slope form to determine the line.

\[y - y_1 = m(x - x_1) \]

where \(m \) is the slope of the line and \((x_1, y_1)\) is a point.

Example:

point \((2, 3)\) and slope =
\[4: y - 3 = 4(x - 2) \]
\[y - 3 = 4x - 8 \]
\[y = 4x - 5 \]
4.5

Graphing Linear Inequalities
A linear inequality results when the equal sign in a linear equation is replaced with an inequality sign (\(<\), \(>\), \(\le\), \(\ge\)).

Examples:

\[2y + 3x < 25 \]
\[-x \geq 15 \]
\[4x - y \geq -24 \]
Graph Linear Inequalities

1. Replace the inequality symbol with an equal sign.
2. Draw the graph of the equation in step 1. If the original inequality contained the symbol \leq or \geq, draw the graph using a solid line. If the original inequality contained the symbol $<$ or $>$, draw the graph using a dashed line.
3. Select any point not on the line and determine whether this point is a solution to the original inequality. If it is, shade the region on the side of the line containing this point. If it is not a solution, shade the region on the side of the line not containing the point.
Graph \(y < 2x + 1 \).
Functions
Definitions

A **relation** is any set of ordered pairs (points). A **function** is a set of ordered pairs in which each first component (input) corresponds to exactly one second component (output).

Persons

- Tom
- Bob
- Mark
- Bill

Ages

- 21
- 22
- 25
- 20

FUNCTION

Persons

- Tom
- Bob
- Mark
- Bill

Ages

- 21
- 22
- 25
- 20

NOT A FUNCTION

(Tom can’t be 21 and 22 at the same time.)
Vertical Line Test

If a vertical line can be drawn through any part of a graph and the vertical line intersects another part of the graph, then each value of \(x \) does not correspond exactly to one value of \(y \) and the graph does not represent a function.

If a vertical line cannot be drawn to intersect the graph at more than one point, each value of \(x \) corresponds to exactly one value of \(y \) and the graph represents a function.
Vertical Line Test

FUNCTION

FUNCTION

NOT A FUNCTION
Evaluating Functions

When a function is represented by an equation, **function notation**, \(f(x) \) is used.

\[
y = 3x - 5 \quad \text{is the same as} \quad f(x) = 3x - 5
\]

When a function is **evaluated**, a value is substituted into the function.

\[
f(x) = 3x - 5
\]

\[
f(2) = 3(2) - 5 = 6 - 5 = 1
\]

\[
f(x+1) = 3(x+1) - 5 = 3x + 3 - 5 = 3x - 2
\]