Formulas, Units, and Constants

Physics Reference Sheet

Formulas

- **Average Speed:** \(\nu = \frac{\Delta x}{\Delta t} \)
- **Average Acceleration:** \(a = \frac{\Delta \nu}{\Delta t} \)
- **Uniformly Accelerated Motion:** \(\nu = \nu_0 + at \)
- **Accelerated Motion:** \(x = x_0 + \nu_0 t + \frac{1}{2} at^2 \)
- **Newton's Second Law:** \(F = ma \)
- **Centripetal Force:** \(F = \frac{mv^2}{r} \)
- **Law of Universal Gravitation:** \(F = \frac{Gm_1m_2}{r^2} \)
- **Force Due to Gravity:** \(F = w = mg \)
- **Work:** \(W = Fd \)
- **Kinetic Energy:** \(E = \frac{1}{2} mv^2 \)
- **Gravitational Potential Energy:** \(E = mgh \)

- **Momentum:** \(p = mv \)
- **Collision in One Dimension:** \[m_1\nu_1 + m_2\nu_2 \]_{initial} = \[m_1\nu_1 + m_2\nu_2 \]_{final}
- **Heat Energy:** \(Q = mc\Delta T \)
- **First Law of Thermodynamics:** \(\Delta U = Q - W_{(by\ the\ system)} \)
- **Work by a Heat Engine:** \(W = Q_H - Q_L \)
- **Change in Entropy:** \(\Delta S = \frac{Q}{T} \)
- **Wave Speed:** \(\nu = f\lambda \)
- **Current:** \(I = \frac{q}{t} \)
- **Ohm's Law:** \(V = IR \)
- **Power Dissipated in a DC Circuit:** \(P = IV \)
- **Power Dissipated through a Resistor:** \(P = I^2R \)

Units

- **Force:** \(1\ N = 1\ \frac{kg\ m}{s^2} \)
- **Energy:** \(1\ J = 1\ N\ m \)
- **Power:** \(1\ W = 1\ \frac{J}{s} \)

Constants

- **Gravitational Constant:** \(G = 6.67 \times 10^{-11}\ \frac{N\ m^2}{kg^2} \)
- **Acceleration Due to Gravity:** \(g = 9.8\ \frac{m}{s^2} \)
- **Speed of Light in a Vacuum:** \(c = 3.00 \times 10^8\ \frac{m}{s} \)

Copyright © 2003 California Department of Education